

High Resistivity High Flex Bimetallic Alloy TM3

Standard				
	ASTM B388: TM3 (EMS: E3)			
	JIS C2530: TM4.115R70 (HITACHI: BH-2)			
Production Description				
	Number of layers 2			
Remarks	Good all purpose 93 ° to 316 °C			
Chemical Composition (%)				
	Grade	Chemistry		
High Expansion Alloy (50%)	Alloy E	Ni:25%; Cr:8.5%; Fe:Bal		
Low Expansion Alloy (50%)	Alloy 30	Ni:42%; Fe:Bal		
Physical Properties				
	Density (g/cm 3)	8.12		
	Modulus of elasticity (KN/mm 3	171		
*value for the lowest temper class				
Thermostatic Properties				
	Flexivity(Specific Curvature)	18.0±5%	x 10 ⁻⁶ (mm/mm)/ °C	
	Max. Sensitivity Temperature Range	90 to 320	°C	
	Useful Deflection Temperature Range	-70 to 380	°C	
	Max. Recommended Temperature	450	°C	
	Electrical Resistivity at 25°C	0.69	μΩ.m	
A TO /O	·			

Applications

It is mainly used for automatic control devices such as temperature control, action and temperature compensation, current limitation, temperature indication, etc., and heat-sensitive elements in instruments and meters.

Merit

Thermal bimetal is a composite material that is firmly bonded by two or more layers of alloys with different linear expansion coefficients. The alloy layer with a larger expansion coefficient is called the active layer, and the alloy layer with a smaller expansion coefficient is called the passive layer. An intermediate layer can be added between the active layer and the passive layer to adjust the resistance. When the ambient temperature changes, Due to the different expansion coefficients of the active layer and the passive layer, bending or rotation occurs.

Tolerance of thickness		
Thickness (mm)	Standar Tolerance (mm)	Specail Tolerance (mm)
$0.050 \le t \le 0.150$	±0.008	±0.003
$0.150 \le t \le 0.250$	<u>±0.010</u>	±0.005
$0.250 \le t \le 0.400$	±0.015	±0.010
$0.400 \le t \le 0.600$	±0.020	±0.015
$0.600 \le t \le 1.000$	±0.025	±0.020
$1.000 \le t \le 1.500$	±0.030	±0.025
2.000 <t≤3.300< td=""><td>±0.050</td><td>±0.040</td></t≤3.300<>	±0.050	±0.040

Physical properties of the above materials are conventional performance indicators. If you have some special requirements, (for example property and tolerance).Pls contact Kinmachi Company directly,we will give you professional assessments and answers.

Shanghai Kinmachi New Material Tecnology Co., Ltd. Tel:021-62968227

Kinmachi Industry (Hong Kong) Co., LTD

Email:candy_wu@kinmachi.com

Fax:021-62968237

www.kmcmetals.com